ELECTRONIC VS PASSIVE DOSIMETRY CAN'T WE ALL JUST GET ALONG?

Neill Stanford, CHP www.stanforddosimetry.com

Presented at the 28th International Dosimetry and Records Symposium

Introduction

- Passive dosimeter (TLD, OSLD, film) typically provides the dose of legal record (DLR)
- Electronic dosimeter (ED, DRD, SRD) used as secondary dosimeter
- Problems arise when we expect them to be identical
- Expectations need to be reasonable

Passive Dosimeter

Used as primary dosimeter

- No immediate readout, no alarms
- Processed by accredited laboratory, must satisfy QA requirements of ISO 17025
- Used to document doses, establishes dose of legal record (DLR)

Electronic Dosimeter

Used most commonly as secondary dosimeter

- Immediate read out
- Alarm options, data logging, data upload, access control
- Most commonly used for photon DDE
- No specific, *issued*, ANSI std, but incorporated into N13.11 since 2001
- Use to control doses

Expectations

- Copy from promotional info on popular electronic dosimeter:
 - Operational dosimetry for personnel working with ionizing radiations sources. X-Ray and gamma: 20 keV to 6 Mev HP (10) deep dose equivalent Accuracy: <+-5% (Cs 137, 0.2 mSv/hr; 20mRem/hr)
- What's it saying?
 - +/- 5% for ¹³⁷Cs at a dose rate of 20 mrem/h

From summary of IAEA study (2007)

- "... the general dosimetric performance of the tested APDs is comparable to the performance of standard passive dosimetric systems [2, 4], (except for beta and low photon energy radiation and pulsed radiation fields). The <u>accuracy at reference photon</u> <u>radiation, the reproducibility and repeatability of measurements</u> <u>are even better than for most passive dosimeters</u>."
- "However, the study highlights that not all the devices have been designed for any radiation field and that <u>the end-user should take</u> into account at least information about the dose equivalent rate and energy ranges before using the dosimeter. It is also shown that two different APD can measure simultaneously H_P(10) and H_P(0,07) for low and high penetrating radiation with satisfactory results."

Emphasis added

Problems/challenges

- Worker sees ED result, seems more "real"
- RP gets to tally cumulative man-rem from ED
- What if they are different
 - TLD problem

- ED problem
- No problem, just different
 - Background
 - Energy response
 - MRD

Comparing Doses

Generally accepted rule is +/-25% for doses
 > 100 mrem

"Most of the groups felt that further investigations were not required when dosimetry results compared within 25 % above 100 mrem."

- From 1998 Electronic Dosimetry Workshop

- Limit to > 100 mrem reduces impact of background subtraction differences
- +/- 25% accommodates energy response differences

Possible Causes of Differences

- Background subtraction
- Photon energy dependence
- Effect of phantom
- Site "calibration" factor
- Dose rate dependence
- Penetrating beta radiation
- Environmental conditions (temp, humidity, RF interference)

Background Subtraction

- DLR typically is accumulating around the clock, including background. Inaccurate background subtraction will affect the comparison.
- Example:
 - 1500 paired DLR/ED results
 - EOY analysis showed ED -20% compared to DLR, comparing all doses.
 - Limiting comparison to 153 pairs with DLR > 100 mrem brought difference to < 2%.

DLR Range	# DLRs	Sum DLR	Sum ED	%diff
0-49	1196	17799	7577	57%
50-99	130	9321	8176	12%
>= 100	153	27217	27626	-2%
total	1497	54337	43379	20%

Background Subtraction example (ctd)

All results

Zoom in on <100 mrem

Stanford Dosimetry, LLC

Dose Rate?

From Reference 6

Energy Dependence?

ED (from reference 6)

Panasonic UD-802

Stanford Dosimetry, LLC

Conclusions/Recommendations

- Only one dosimeter provides the dose of legal record
 - Educate the workforce and management about uses
 - Secondary dosimeter is for dose control and backup
- Differences at low doses are often due to background subtraction
 - Expect better agreement at higher doses
- Differences at higher doses (>100 mrem) are due to systematic bias such as energy response
 - Understand radiation fields
 - Understand dosimeter energy response characteristics
 - Perform side by side test to document differences

Conclusions/Recommendations (cont.)

- Establish adjustments to help ED be a better predictor of DLR results:
 - Add some background/general area component to ED sum
 - Adjust ED calibration to agree with DLR for typical work fields or for some well known field (¹³⁷Cs)

References

- **1.** IAEA-TECDOC-1564; Intercomparison of Personal Dose Equivalent Measurements by Active Personal Dosimeters, November 2007
- 2. ANSI/HPS N13.11-2009; American National Standard for Dosimetry -Personnel Dosimetry Performance - Criteria for Testing, January 2009
- 3. ANSI/HPS N13.11-2001; Personnel Dosimetry Performance Criteria for Testing, July 2001
- 4. RadSafe archives; <u>http://www.radlab.nl/radsafe/archives/</u>
- 5. NIST; Conference report: Electronic Dosimetry Workshop Gaithersburg, MD October 14-16, 1998; J. Shobe and K.L. Swinth
- 6. Battelle Memorial Institute, *Evaluation of the MGP Instruments Model DMC 2000s Electronic Dosimeter;* January 2001; <u>http://www.arrowtechinc.com/mgp/PNWD-3040.pdf</u>