Back to Basics - Dose Algorithms

Presented by:
Neill Stanford, CHP
Stanford Dosimetry LLC
Presented at the 2007 Dosimetry and Records Symposium
Overview

- Performance goals
- Response data
- Designs
- Testing
- DOELAP revision
- Issues
Goals

• Performance
 • Good dosimetry in the field
 • Accurately record dose
 • Meet the standard
 • Which one?

• Design
 • Simple design?
 • Hand calculation friendly?
 • Linear?
Response Data

- Critical investment
- Establishes algorithm “calibration”
- Only pure fields are necessary
- Panasonic (Ash & Doc) data excellent starting point
- Most algorithm designs allow good performance using a representative subset of possible fields.
- Single element
- Dose = response * correction factor
- Knowledge of field or perfect dosimeter required for best accuracy
- Example: single element extremity dosimeter
Design – Simple (ctd.)

- **Benefits**
 - Simplicity
 - Minimal uncertainty
 - Very useful for troubleshooting more complex algorithms
 - Hand calculations possible

- **Drawbacks**
 - Need field information or perfect dosimeter
 - Minimal redundancy
- Multiple elements.
- Use relative element responses (ratios) to determine correction factors
- Knowledge of field or perfect dosimeter not required
- Examples: SDose, DOC, branching style Panasonic, Thermo,...
Benefits
- Versatility, range of accommodated fields
- No need for *a priori* field knowledge
- Readings provide information about the field
- Can provide redundancy with multiple elements

Drawbacks
- Complexity means greater uncertainty
- Hand calculation can be difficult to impossible
Testing

- Pure fields (from test data)
 - Optimize design
- Mixed fields (synthetic testing)
 - Optimize design
- Worker data
 - Check for unreasonable doses
- Low dose data
 - Check for unreasonable doses
Testing – Synthetic testing

Results of 130 test fields
Shallow dose:
 85% within 10%
 98% within 20%

Deep dose:
 83% within 10%
 94% within 20%

- Use arithmetic to combine pure field responses and generate mixed field responses (TLD responses are additive)
- Run and rerun test file to fine tune algorithm
DOELAP Revision

- Proficiency test standard for DOE facilities being revised
- New revision will adopt much of ANSI N13.11-2001
- Algorithms must be revised to maintain performance levels
<table>
<thead>
<tr>
<th></th>
<th>DOE/EH-0027 (1986)</th>
<th>ANSI N13.11-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon fields</td>
<td>6 fields 20-662 keV</td>
<td>• 70 fields, 20-1332 keV,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New ck factors,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Angles for keV > 70</td>
</tr>
<tr>
<td>Beta fields</td>
<td>3 fields (204Tl, 90Sr/Y, DU)</td>
<td>3 fields (85Kr, 204Tl, 90Sr/Y)</td>
</tr>
<tr>
<td>Neutron fields</td>
<td>2 fields (252Cf bare, D$_2$O mod)</td>
<td>-- same --</td>
</tr>
<tr>
<td>Mixtures</td>
<td>• 137Cs + any x-ray,</td>
<td>Same, with 60Co as well as 137Cs available for gamma source</td>
</tr>
<tr>
<td></td>
<td>• Any photon plus neutron,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High E beta + any photon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Any beta + 137Cs</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>10% rule?</td>
</tr>
</tbody>
</table>
Photon dose conversion factors will change

- DOELAP (1986) was based on Yoder et al
- NVLAP (2001) based on Grosswendt data
Dose ≠ Dose
- Dose (DOELAP) is not equal to Dose (NVLAP)
- Most pronounced for energies < 50 keV

Response/dose will change, algorithm will need modification.
Issues

- **Background subtraction**
 - Element specific
 - Dose
- **Investigating suspect performance**
 - Algorithm problem
 - Dosimeter/reader problem
How do you subtract background?

1. Subtract background doses
 - Net dose = \(\text{alg(gross response)} - \text{alg(bkgd response)} \)

2. Subtract background responses
 - Net dose = \(\text{alg(gross responses-bkgd responses)} \)

• Subtracting doses:
 - Reduces available information on worker field
 - Added uncertainty with dose calculation on background dosimeter
Example:

30 mrem 20 KeV x-ray
+ 30 mrem Cs bgd

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>R34</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>37</td>
<td>30</td>
<td>499</td>
<td>22</td>
<td>22.7</td>
<td>20 keV</td>
</tr>
<tr>
<td>bkgd</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>1.0</td>
<td>662 keV</td>
</tr>
<tr>
<td>Gross</td>
<td>66</td>
<td>60</td>
<td>529</td>
<td>53</td>
<td>10.0</td>
<td>42 keV</td>
</tr>
</tbody>
</table>

Using (gross dose) – (background dose) confounds information available on worker dosimeter response.
Issues – Suspect performance

Is it the algorithm or the dosimeter/reader?

1. Calculate response/dose for pure fields
 - Observed = mR*/mrem
2. Compare to algorithm development data
3. If current response = R&D resp. then problem is with algorithm design.
4. Otherwise, check dosimeter and reader for instability or non-standard conditions
Issues – Suspect performance

Example:
- 500 mrem M30 (20 keV x-ray)
- Calculated doses low by 20%

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed mR*</td>
<td>300</td>
<td>240</td>
<td>5000</td>
<td>218</td>
</tr>
<tr>
<td>mR*/mrem</td>
<td>0.6</td>
<td>0.48</td>
<td>10</td>
<td>0.436</td>
</tr>
<tr>
<td>Dev. Data mR*/mrem</td>
<td>0.7332</td>
<td>0.6068</td>
<td>9.9758</td>
<td>0.4404</td>
</tr>
<tr>
<td>%diff</td>
<td>-18.2%</td>
<td>-20.9%</td>
<td>0.2%</td>
<td>-1.0%</td>
</tr>
</tbody>
</table>

- Something changed since algorithm dev data.
- This is a good time to apply “simple algorithm” approach.
Final Thoughts

- Start with good data
- Keep algorithm design as simple as practical
- Test it as much as possible
- Document it thoroughly
- Check it constantly
- Revise it when necessary
Click on the button below to visit our website for references and more information. Visit our bibliography page for the most up-to-date version of this presentation.