A New Algorithm for the Panasonic UD-802

Neill Stanford, CHP STANFORD DOSIMETRY

STANFORD DOSIMETRY

Abstract

In response to the revised standard for whole body dosimeter testing, HPS N13.11-2001, a function style algorithm has been designed for the Panasonic UD-802 dosimeter. This new algorithm, to be implemented at the Callaway Plant, successfully meets the challenges of the new test fields, including mixtures of beta or neutron with low energy photons, as well as accommodating the expanded range of photon energies. The development of the new algorithm and the standard Panasonic algorithm that it replaces are discussed with respect to the revised standard.

STANFORD DOSIMETRY

June 4, 2002

1

June 4, 2002

Response matrix of the UD-802

Field	Energy	E1	E2	E3	E4
M30	20	0.765	0.637	10.405	0.378
NS-25(prelim)	20	0.821	0.762	13.198	0.545
H50	39	0.817	0.793	11.903	1.302
NS-80	65	0.772	0.764	7.056	1.424
H100	83	0.770	0.761	4.572	1.274
NS-120	100	0.750	0.747	3.364	0.956
H150	118	0.788	0.775	2.524	0.906
H300	251	0.905	0.895	1.581	0.914
Cs	662	0.956	1.000	1.000	1.067
Со	1250	0.950	0.977	0.901	0.880
STANFORD DOSIMETRY June 4,					

HPS N13.11-2001 test fields

• Pure fields

- Low energy photons over 50 fields from 20 200 keV
- High energy photons ¹³⁷Cs and ⁶⁰Co
- Betas 800keV and 2MeV E_{max}
- Neutron hard or moderated

• Mixtures

- High and low photons
- Any photon plus beta
- Any photon plus neutron

STANFORD DOSIMETRY

The Five Essentials for a Successful Dose Algorithm

June 4, 2002

- Use a function that predicts the ratios E1/E4 and E2/E4 based on photon field
- The fraction of E4 response subtracted from E1, E2 depends on photon energy
- Function based correction factors for photon doses
 - Smooth fit to full range of photon energies

June 4, 2002

STANFORD DOSIMETRY

New algorithm general flow (ctd.)

• Non-photon calculations

- 1. Calculate non-photon signals, NetE1 and NetE2, by subtracting estimated photon contribution
- 2. Characterize field using ratio of NetE1/NetE2
- 3. Calculate appropriate correction factor from characterization
- Calculate non-photon dose using net responses and correction factors

June 4, 2002

5. Test non-photon dose for significance

STANFORD DOSIMETRY

Synthetic testing results

- Synthetic testing to over 130 pure and mixed fields: ¹³⁷Cs, ⁶⁰Co, ⁹⁰Sr/Y, ²⁰⁴Tl, D₂O mod ²⁵²Cf, 8 x ray fields from 20-250 keV
- Ratios of 1:3, 1:1 and 3:1 for mixtures of high and low energy photons, photons and beta, and photons and neutron.
- Single algorithm

June 4, 2002

STANFORD DOSIMETRY

STANFORD DOSIMETRY

June 4, 2002